Dino: Summary and Examples

Matthew Rosing
Robert B. Schnabel
Robert P. Weaver

CU-CS-386-88 March 1988

Department of Computer Science
Campus Box 430

University of Colorado

Boulder, CO  80309-0430

This research was supported by AFOSR grant AFOSR-85-0251,
and NSF cooperative agreement DCR-8420944.






Dino : Summary and Examples

Matthew Rosing, Robert B. Schnabel, and Robert Weaver
University of Colorado at Boulder

Abstract. Dino is a new language, consisting of high level modifications to C, for writing numerical programs on dis-
tributed memory multiprocessors. Our intent is to raise interprocess communication and process control to a higher
and more natural level than using messages. We achieve this by allowing the user (o define a virtual machine onto
which data structures can be distributed. Interprocess communication is implicitly invoked by reading and writing the
distributed data. Parallelism is achieved by making concurrent procedure calls. This paper provides a summary of the
syntax and semantics of Dino, and illustrates its features through several sample programs. We also briefly discuss a
prototype of the language we have developed using C-++.

L. Introduction. Dino ("DIstributed Numerically Oriented language") is a language for programming
numerical applications on distributed memory multiprocessors, such as hypercubes. Our goal is to make
-parallel numerical programs for such machines easier and more natural to write and understand. We
achicve this by taking advantage of the highly structured nature of the data structures, distribution of data
among processors, and process structures of many parallel numerical algorithms. This enables us to raise
interprocess communication and process control to a higher, more natural level than is found in most
current systems. ;

‘We have previously given a brief description and motivation for the key constructs in Dino (Rosing
and Schnabel [1988]). The first of these is the specification by the programmer-of a virtual parallel machine
that best fits the parallel algorithm. This virtual machine is referred to as a "structure of environments".
Each virtual processor, or environment, is similar to an environment in a serial language. Structures of
environments can be created in the form of arrays or trees. The second key construct is the ability to distri-
bute data structures, such as arrays, over the virtual machine depending on how the data is used in the paral-
lel algorithm. The third construct provides communications at a higher level than messages. This is
achieved by reading and writing elements of a distributed data structure, utilizing the mapping of the data
structure to the structure of environments to specify communication patterns. Finally, the fourth construct
provides concurrent execution. This is achieved through "composite procedure calls", a form of parallel
remote procedure calls. By invoking a composite procedure that is declared within an environment struc-
ture, the procedure is invoked concurrently in each environment in that structure. The combination of these

Department of Computer Science, University of Colorado, Boulder CO 80309. Research supported by AFOSR grant ATOSR-85-0251, and NSF
cooperative agreement DCR-8420944,

To appear in proceedings of The Third Conference on Hypercube Computers
and Applications, held in Pasadena, CA, January 1988.



constructs provide a "single program multiple data" type of parallelism.

Dino consists of modifications to the language C. These modifications could be made to most struc-
tured languages, but we have chosen C for several reasons. We have many tools for implementing a C com-
piler, C is available on all of our target machines, and C is a structured language which fits well with our
modifications.

We have found relatively little work in this arca. Languages such as Linda (Gelernter et al [1985])
and Pisces (Pratt [1987]) support numerical applications, but at a lower level than Dino. The Force (Jordan
[1986]) primitives give very good support for structuring numerical applications on shared memory
machines and we would like to provide similar support for distributed memory machines. Virtual machines
can be declared in Structured Process (Li et al [1985]). It is possible to distribute data structures in Scott et
al [1987].

Sections 2-5 of this paper paper describe the more important semantics and syntax of Dino. Section
6 briefly discusses a prototype of the language we have built using C++ (Stroustrup [1986]). In Section 7
we give four examples of Dino programs.

2. Environments. The foundation of a Dino parallel program is a data structure of virtual processors, called
environments, that is constructed by the programmer to suit the parallel algorithm. An environment in
Dino is similar to a block in a block structured language; it contains local data, and one or more procedures.
Only one procedure can be active in an environment at one time. A single environment declaration can be
used to create a data structure (usually an array) of environments. These environments are identical except
for the distribution of distributed data structures among them (Section 3) and possibly a set of identifying
constants. Furthermore, they can contain composite procedures (Section 5), which may be invoked from
another environment, generally the host; this invocation causes the procedure to run in each environment
simultancously. This Jeads most naturally to a "single program, multiple data" type of parallelism. It is
intended that environments can also be dynamically created to form graphs of virtual machines, but this
feature is not yet implemented.

The number of environments in a Dino program can equal the number of processors on the target
parallel machine, or it can be a larger number that is convenient for expressing the parallel algorithm (see
Section 7). In the latter case, it is intended that the Dino compiler will combine groups of environments
into a smaller number of actual processes that is appropriate for the target machine. The mapping functions
for the distributed data structures provide the information that allow this to be done in a way that keeps the
total amount of interprocess communication small. This feature of combining virtual processes is one of
the interesting research topics associated with Dino, and it is not implemented in the current prototype.

2.1. Syntax. We will describe the syntax and semantics of Dino using examples. A non parallel "hello
world" program in Dino is

environment host {
main(){
printf("hello world\a");
} /*main*/
} /*host*/

The keyword environment declares a scalar environment called host consisting of the procedure main . All
Dino programs must have a host environment containing the procedure main as this is where exccution
starts. A parallel "hello world" program is:

environment node[2:idx][2:idy] {
composite hello() {
printf("hello, I am node[%d][%d\n" idx,idy);
} /*hello*/
} /*node*/



environment host {
main(){
hello(#;
} /Fmain*/
} /*host*/

This program contains the scalar environment 4ost and the 2x2 array of environments node. Each node
has the constants idx and idy which specify where in the 2x2 array the environment is. The output of the
above program might be, depending on the nondeterministic order of the print statements:

hello, I am node[0][{0]
hello, T am node[0][1]
hello, T am node[1][0]
hello, T am node[1][1]

3. Distributed Data Structures. A data structure can be distributed over an environment structure in order
to concurrently operate on that data structure; cach environment operates on its part of the data structure.
Each element of the data structure can be mapped onto one or more environments depending on how it will
be used. If, for example, two environments need to access the same element of a data structure, then that
element is mapped onto both environments. Such clements then can be accessed locally, where only the
local copy is used, or remotely, where all of the copies are affected. The next section describes this in more
detail.

The distribution of a data structure of the environment structure is defined when declaring the data
structure. This distribution consists of a mapping function which can be defined by the user or sclected from
a library. The most common distributed data structures are single or multiple dimension arrays. The two
most common classes of mapping functions that we have seen for arrays are blocking and wrapping. Block-
ing places consecutive rows, columns, or sub-arrays of an array onto a single environment, one block per
environment. With this type of mapping it is sometimes useful to overlap the edges of the blocks; ie, the
edges of the blocks are mapped to neighboring environments. Wrapping places consecutive rows, columns,
or sub-arrays onto consecutive environments, and then repeats this pattern until the entire data structure has
been mapped. This is most useful for load balancing. The details of defining mapping functions will not be
discussed here.

Dynamic distributed data structures are planned but will not be discussed here.

3.1. Syntax. The declaration of distributed matrices used for matrix multiplication could be

environment node[N:id] {
distributed float A[N][N]: byRow;
distributed float B[N][N] : byCol;
o}

which would declare N environments node, and place one row of the matrix A and one column of B on
cach environment. The identifiers byRow and byCol are mapping functions which were previously defined
by the user or are in a library. An example of an application using a one to many mapping is the solution of
Poisson’s equation:

environment node[N:1dx][N:idy]{
distributed {loat U[N+2][N+2] : NSEWoverlap;
o}

An NxN array of environments node is declared, and Each element of U is mapped to the corresponding



element of node and its four nearest neighbors to the north, south, east, and west. (The matrix U is larger
than node because of the border points.) Both of these examples are completed in Section 7.

4. Communication. Communication between environments is accomplished by reading and writing distri-
buted variables. Distributed variables can be accessed locally or remotely. A local access to a distributed
variable is the same as a standard access to a standard, local variable (the distributed element accessed must
be mapped to the environment accessing it). A remote access is used to generate communications. A remote
write to a variable causes a message, containing the value, to be sent to all of the other environments to
which the variable is mapped. A corresponding read of the variable on one of the other environments
receives the message and assigns the value to the variable. This is how multiple copies of the same variable
arc kept consistent across many environments, Remotely accessing a variable which is mapped only to the
current environment is the same as doing a local access. It is possible to write to or read from a distributed
variable that is not mapped to one’s environment; this is primarily useful for shifting data, such as the rotate
procedure in the matrix multiplication example.

Synchronization in Dino is accomplished by reading and writing distributed variables (and by the
barrier implicit at the end of a composite procedure call). Distributed variables may be accessed either syn-
chronously or asynchronously; the synchronization attribute is associated with the data structure, which can
be declared as either "distributed” (which is the default and implies synchronous access) or "asynch distri-
buted." A remote read to a synchronous variable will used the first unread value of this variable that has
been received from another environment; if there is none it will block until another environment does a
write. Synchronous remote writes do not block. A remote read to an asynchronous variable will use the last
value received, if any, otherwise a local read is made. A remote write 1o an asynchronous variable is the
same as a remote synchronous write. Note that the style of data synchronization in a Dino program can be
altered by simply changing the declaration of distributed variables.

4.1. Syntax. The syntax of a local access to a distributed variable is the same as in C. The syntax of a
remote access is the same as a local access except that the character *#’ follows the reference. An example
of this is shown in a section of the program solving Poisson’s cquation. Assuming the definition given in
the previous example, the following statement would do the actual calculation on node [x—1]{y—1] (offsets
used because of border):

Ulx]lyl# = Ulx]ly] + (Ulx+1]{y}# + Ulx-11[y}# + UXI[y+13# + Ulx][y-1]# - 4*U[x][y]) * w/4;

The right hand expression consists of a local read of U [x Ily] and a remote read of U [x+1]{y ], U [x~1][y],
Ulx]ly+1], and U [x][y—1]. The computation waits, if necessary, until those values are received from the
four neighboring environments, calculates the new value of U [x ][y ], and then broadcasts the new value (o
the neighbors.

5. Parallel Execution. Concurrency in Dino is achieved by using a composite procedure call, a form of
parallel remote procedure calls. A "composite procedure” consists of a set of identical procedures with one
procedure in each environment of an environment structure. Invocation of a composite procedure calls all of
the procedures simultancously. Each procedure can work on data which is resident in its environment, or on
data that has been passed to it as a parameter. Parameters can be standard variables, which are replicated
and sent to each procedure, or they can be distributed variables, which are broken up and distributed based
on their mapping function. Unlike C, entire arrays can be passed as parameters. Furthermore, parameters
can be passed by value, result, or both.

5.1. Syntax. A composite procedure must be declared within an environment, and is preceded by the key-
word composite . The formal parameters are preceded by the keywords in or our if they are passed by value
or result respectively. The default is pass by value/result. An example for Poisson’s equation, in which the
initial array U is passed as a parameter to the composite procedure Poisson , would be:



environment node[N:idx][N:idy]{
composite Poisson(U, in itns)
distributed float U[N+2][N+2] : NSEWoverlap;
int itns; /*number of iterations™*/
{..}
}

The array U is passed by value/result and is distributed to each procedure of Poisson based on the mapping
function NSEWoverlap . Integer itns is replicated and passed to each procedure, by value only. Invocation
of this procedure could be done from the following environment:

environment host {
float VIN+2][N+21;
main() {
nitV(V);
Poisson(V[][1,250)#;
}
}

The ’# indicates that a remote procedure call is made. Furthermore, the syntax V][] sclects the entire array
V. The ability to move subsections of arrays in a single statement is used quite often and therefore Dino
provides convenient facilities for assignments and parameter passing to be done on subsections of arrays.

6. Dino/C++. We have developed a prototype of Dino using C++ (Stroustrup [1986]). C++ is an object-
oriented extension of C. Its object oriented nature is usclul for simulating language constructs. C++ classes
are used to implement environments, composite procedures, distributed data structures, and mapping func-
tions. We have built only a subset of Dino as certain language features arc difficult to implement without a
compiler. The subset includes one and two dimensional arrays of environments, and distributed one or two
dimensional arrays of integer or double precision numbers. The mapping functions include block, block
with overlap, and one to all. Finally, there are several differences in the syntax between Dino and
Dino/C++.

The prototype runs on our network of Sun work stations and on an Intel hypercube. Our experience
is that it is much easier to write programs using Dino/C++ than using the libraries provided with these
machines. We would not, however, use Dino/C++ for writing a large application because the resulting code
would be very slow. One of the major causes of this is that much of the work that should be done at compile
time is done at run time in Dino/C++. Another inefficiency occurs in the message passing system. There is a
lot of overhead in copying and packaging messages before handing them off to the underlying system. We
believe that these problems can be corrected when a full compiler for Dino is written.

7. Examples. This section contains four examples of Dino programs. We believe that they illustrate that
Dino permits simple representations of parallel numerical algorithms that correspond closely to the natur-
ally way one would informally describe that parallel algorithm.

Note that in the first example, the number of environments is representative of the number of pro-
cessors on a parallel machine, while in the other three examples the number of environments is chosen o
naturally reflect the data parallelism in the problem, and may be larger than the number of actual proces-
SOTS.

7.1. Example 1: Dot Product. This is a simple program illustraling parameter passing to composite pro-
cedures. In this example the dot product of two vectors are calculated. The vectors are distributed in block
fashion over the node environments. Each node environment calculates the "partial" dot product and returns
the result to the host which sums up the partial dot products. The partial product of node [i] is stored in



z[i].

#deline N 1024
#define P 32

environment node[P:id] {
composite dotProd(in x, in y, out z)
distributed float x[N] : block;
distributed float y[N7] : block;
distributed float z[P] : element;
L
int i;
z[id] = 0;
for (i=1d*N/P; i<(id+1)*N/P; i++)
z[id] += x[1]*y[il;

}

}

environment host{

main(){
float x[N], y[N], z[PT;
inti;
float sum;
nit(x,y);

dotProd(x[], y[1, z[D#;

for (sum=i=0; i<P; i++)
sum += z[i];

printf("sum is %MN\n",sum);

}

7.2. Example 2: Poisson’s equation. This example illustrates the use of a distributed array using a one to
many mapping. Each element U [x ][y ] is mapped to node [xid |[yid ] and the four neighboring environments
to the north, south, east, and west. The communication between these environments is implicit in the reads
and writes to U, due to the mapping function. Each composite procedure reads the values from the neigh-
boring environments (waiting if they have not already arrived), calculates the new value of U [x1[y], and
broadcasts the value to the four neighbors. The algorithm is a red-black SOR method (see cg Adams and
Jordan [1986]).

#define N 128
environment node[N:xid][N:yid]{

composite Poisson(U, in itns)
distributed float U[N+2][N+2] :NSEWoverlap;
int itng; /*number of iterations*/
{

inti,x,y,w;

X = xid + 1;
y=yid + 1;



w = 1.8; /*relaxation factor*/
/*if red block: calculate using local values to start cycle®/
if ((x+y)%2)
Ulx]lyl# = Ulx][y] + (Ulx+1][y] + Ulx-1][y] + U[x][y+1] +
UlxI[y-1] -4*U[x][y]D) * w/4;
[*calculate remaining iterations using remote values*/
for (i=1; i<itns; i++)
Ulx]lyl# = Ux]ly] + (Ulx+11[y]# + Ulx-1][y]# +
Ulx]ly+1]# + Ulx][y-11# -4*U[x][y]) * w/4 ;
} /*poisson*/
} /*node*/

environment host{
float G[N+2][N+21;

main(){
nit(G);
Poisson(GI][], 250)#;
display(G);
} Fmain*/

}/*host*/

7.3. Example 3: Matrix Multiplication. This program, which multiplies two matrices together, illustrates a
more complicated environment, and how distributed data structures can be passed as parameters (o non-
composite procedures. The composite procedure multiply takes the matrices @ and b and distributes them
by row and by column onto the node. environments. Each node starts by calculating ¢ [id1[id]. The b
matrix is then rotated to the left after which each node calculates clid][id+1]. This is repeated for N cycles.

Note that rotate , which is a "normal" procedure has the formal parameter A/ which is a distributed
variable. The mapping function is that of the actual parameter. Only a reference to the array is passed, not
the entire array.

#define N 1024
#define LEFT(d) id>17id-1:N-1
#define RIGHT(d) id<N-1?id-1:0

environment node[N:id]{
rotate(M) /*rotate the b matrix to the left*/
distributed float M{N][NT;
{
MIJ[LEFT(id)}# = M[][id];
M

]
[Jlid] = M[J[RIGHT(id)}#;

composite multiply(in a, in b, out ¢)
distributed float a[N][N] :byRow;
distributed float b[N][N] :byCol;
distributed float ¢[N][N] :byRow;
{
int cycle,k;
float sum,;



for (cycle=0; cycle<N; cycle++){ /*for each element of c[id][]*/

for (k=sum=0; k<N; k++) /*generate dot product*/
sum += afid][k] * b{k][id];

clid][(cycle+id)%N] = sum;
rotate(b); /*rotate the b matrix*/
} /*for*/

} Amultiply*/

} /*node*/

environment host{
float at[N][N]; /*temporary matrices*/
float bt[N][N];
float ct[N][N];

main(){
init_data(at,bt);
multiply(at[][],bt[][],ct{][D#;
print_matrix(ct);

}

7.4. Example 4: Gaussian Elimination. This program illustrates the use of an environment with several
composite procedures. The equation Ax=b is solved using Gaussian elimination with partial pivoting and
two back solves. The node environments consist of the composite procedures gausElim , Iyb, uxy , the dis-
tributed data structures A and y, and the replicated data structure p. The pivot vector p is interesting
because each environment maintains a complete, up-to-date copy. (Other implementations are possible.)
For brevity, the functions uxy and findPivot are stubs.

The procedure gausElim takes as input the A matrix and calculates the PLU decomposition. A is
distributed by columns onto the node environments. This makes pivoting simpler. The algorithm works as
follows. For each of N cycles, the process holding the current pivot column determines the pivot row and
broadcasts it, and each process pivots its column. Then the pivot process determines the multipliers and
broadcasts them, and each processor to the right of the pivot column eliminates its column. Note that the
vector of multipliers is sent in a single statement; the syntax m[<diag ,N >] signifies the subvector of m
from diag up to and not including N .

The procedure lyb calculates the solution y to Ly=Pb, while uxy calculates the desired solution x
by solving Ux=y. The procedure lyb exccutes as follows: for cach y [i ], in order, it calculates the vector Ly
which is A[j][i]*y[i], j>i. It distributes this vector to the other processors, which then subtract Iy [id ] from
ylid].

#deline N 128
environment col[N:id]{ /*one env for each column®/

distributed float A[N][N]:byCol,
distributed float y[N] :element;

int p[NJ; [*saves pivot order*/
int findPivot(){

/*finds pivot row on this column*/

}

composite gausElim(in At)
distributed float At[N][N]:byCol;



{
distributed float m[N] : ALL; /*multipliers for eliminating columns®*/
distributed int pRow : ALL; /*the pivot row*/

int diag, i; /*diag is the current column eliminated*/
Alllid] = At[][id]; [*¥transfer At to a global position*/
for (i=0; i<Nj; i++) /¥init pivot order*/

plil =1

for (diag=0; diag<N-1; diag++){ /*for cach column to eliminate*/
if (diag==id){
pRow# = findPivot(); [*broadcast the pivot row®*/
swap( &p[pRow], &pl[diag]); /*pivot b’ vector*/
swap( &A[pRowl][id], &Aldiag][id]); /*pivot A*/
for (i=diag+1; i<N; i++) /*determine multipliers*/
Ali]lid] /= Alid][id];
m([<diag,N>J# = A[<diag,N>][id]; /*send multipliers*/
}
else {
swap( &p[pRow#], &p[diag]); /*recv pRow and pivot b’ vector*/
swap( &AlpRowl][id], &A[diag][id]); /*pivot A%/
m[<diag,N>] = m[<diag,N>J# /*receive multipliers*/
if (diag<id) [*climinate column®/
for (i=diag+1; i<N; i++)
Ali][id] -= m[i]*A[diag][id];

}

composite lyb(in b) /*solve ly=b for y*/
distributed float b[N] : ALL;
distributed float Iy[N] : block; /*1[i] = y[jl*A[i][j]*/
inti,j;

y[id] = blp[id]];
for (i=0; i<N; i++) { /*{or each row*/
if (i==id){ [*calculate y[i]*/
for (j=id+1; j<N; j++)
ly[j]# = y[id]*A[j1[id]; /*send product where it is needed*/
}

else if (i<id) /¥ ylid] == *
ylid] -= 1y(id}# /*bIp(id]] - sum of y[iJ*A[i){id}; O<i<diag®/
)

}

composite uxy(out x)
distributed float x[N] : ALL;
{} /% ... solve Ux=y ..%/

environment host{
init(A,b)
{} /*... initialize A and b arrays ...*/



&)

@

3

“

&)

(6)

main(){
float A[N][NT;
float b[NT];
float xt[N],x[N7];
int p[N1,i;

init(A,b);

gausElim(A[][D#; [*calculate LU*/
Lyb(b[D# /*solve Ly=b for b*/
uxy(xt[1,p[D#, /#solve Ux=y for x*/

for (i=0; i<N; i++) x[i] = xt[p[i]]; /*un pivot x vector*/

}

REFERENCES

D. GELERNTER, N.CARRIERO, S. CHANDRAN, and S.CHANG, Parallel programming in Linda,

in Proceedings of the 1985 International Conference on Parallel Processing, IEEE Press, 1985, pp.
255-263.

H. F. JORDAN, Structuring parallel algorithms in an MIMD, shared memory environment, Parallel
Computing 3, 1986, pp. 93-110.

T. PRATT, The Pisces 2 parallel programming environment, in Proceedings of the 1987 International
Conference on Parallel Processing, IEEE Press, 1987, pp. 439-445.

B. STROUSTRUP, The C++ Programming Language, Addison-Wesley, Reading, Massachusetts,
1986.

L. SCOTT, J. BOYLE, and B. BAGHER, Distributed Data Structures Jor Scientific Computation, in
1986 Proceedings of the Second Conference on Hypercube Multiprocessors, STAM, 1987, pp. 55-66.

H. LI, C. WANG, and M LAVIN, Structured Process, in Proceedings of the 1985 International
Conference on Parallel Processing, IEEE Press, 1985, pp. 247-254.



Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

|

REPORT DOCUMENTATION PAGE

13 RAEPORT SECURITY CLASSIFICATION
Unclassified

10. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHQRITY

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;

2b. DECLASSIFICATION/COWNGRADING SCHEDULE

distribution unlimited

4. PERFCAMING ORGANIZATION AEPORT NUMBER(S)

CS-CU-385-88

5. MONITORING QRGANIZATION REPORT NUMBER(S)

b. OFFICE SYM80L
(1f applicadle)

68 NAME OF PERFORMING QRGANIZATION

University of Colorado

7a. NAME OF MONITORING CRGANIZATION

Air Force Office of Scientific Research/NM

6c. ADDRESS (City. State and ZIP Code)
Computer Science Department

Campus Box 430
Boulder, CO 80309-0430

7b. ADODRESS (City, State and ZIP Code)

Building 410

Bolling Air Force Base, DC 20332

8s. NAME OF FUNOCING/SPONSQORING
ORGANIZATION

8b. OFFICE SYMEBOL
(If appiicabie)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

AFOSR-85-0251

8c. AODDRESS (City, State and ZIP Code)

10. SQURCE OF FUNOING NOCS.

PROGRAM PROJECT
ELEMENT NO. NQ.

TASK
NQ.

WQORK UNIT
NO.

11, TITWUE (Inciude Security Classification)
Dino: Summary and Examples

12. PERSONAL AUTHORI(S)

Matthew Rosing, Robert B. Schnabel, Robert P. Weaver

13a TYPE QOF REPQORT
Technical

13b. TIME COVERED
FROM TO

14. OATE OF REPORT (Yr., Mo., Day)

88/3/1

15. PAGE COUNT

10

18. SUPPLEMENTARY NOTATION

H

17. COSAT!I CODES
~FIELD GROUP

SuB. GA.

18, SUBJECT TERMS (Continue on reverse if necessary and identify by black number)

Parallel programming language, numerical computation,
distributed memory multiprocessor

19. ABSTRACT (Continue on reverse if necessary and identify by biock number)

Dino is a new language, consisting of high level modifications to C, for writing numerical

programs on distributed memory multiprocessors.

Our intent is to raise interprocess

communication and process control to a higher and more natural level than using messages. We
achieve this by allowing the user to define a virtual machine onto which data structures can be
distributed. Interprocess communication is implicitly invoked by reading and writing the
distributed data. Parallelism is achieved by making concurrent procedure calls. This paper
provides a summary of the syntax and semantics of Dino, and illustrates its features through
several sample programs. We also briefly discuss a prototype of the language we have developed

using C++.

20. CISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED (X same as reT. (] otic users (]

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified

22a. NAME OF RESPONSIBLE INDIVIOUAL

Jr Brian W. Woodruff, Major USAF

22b. TELEPHONE NUMBER 22c. QFFICE SYMBCL

(Inctude Area Code)

202/767-5025

DD FORM 1473, 83 APR

EDITION OF 1 JAN 73 1S OBSOLETE.

Unclagsified
SECURITY CLASSIFICATION OF THIS PAGE

19




